Data Mining Evolutionary Learning (DMEL) using H base
نویسنده
چکیده
In current market scenarios, telecom companies are quite competitive and look forward to have lion’s share in the market by winning new and withholding existing customers. Customers who are lost to competitor are known as Churned customers and can be retain by adopting Churn prevention model. For a given dataset, this model predicts the list of customers to be churned in future enabling the respective authorities to take action accordingly. However in telecom, the results of algorithms suffer due to disproportion nature and vast size of datasets. In this paper, Genetic Programming (GP) based approach for modelling the challenging problem of churn prediction is incorporated in HBASE. A data mining algorithm, Data Mining Evolutionary Learnings (DMEL), handles a classification problem which helps to meet accuracy of prediction. As data in telecom industry is going to increase so to make the classification process fast DMEL algorithm is incorporated in HBase. For competitive telecom industry, churn prediction approach would be significantly beneficial.
منابع مشابه
A novel evolutionary data mining algorithm with applications to churn prediction
Classification is an important topic in data mining research. Given a set of data records, each of which belongs to one of a number of predefined classes, the classification problem is concerned with the discovery of classification rules that can allow records with unknown class membership to be correctly classified. Many algorithms have been developed to mine large data sets for classification...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملDevelopment of an evolutionary fuzzy expert system for estimating future behavior of stock price
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system” (DEFE...
متن کاملA Technique for Improving Web Mining using Enhanced Genetic Algorithm
World Wide Web is growing at a very fast pace and makes a lot of information available to the public. Search engines used conventional methods to retrieve information on the Web; however, the search results of these engines are still able to be refined and their accuracy is not high enough. One of the methods for web mining is evolutionary algorithms which search according to the user interests...
متن کاملAn Evolutionary Multi-objective Discretization based on Normalized Cut
Learning models and related results depend on the quality of the input data. If raw data is not properly cleaned and structured, the results are tending to be incorrect. Therefore, discretization as one of the preprocessing techniques plays an important role in learning processes. The most important challenge in the discretization process is to reduce the number of features’ values. This operat...
متن کامل